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Weis & Hutter (J. Fluid Mech. vol. 476, 2003, p. 63) obtained an implicit algebraic
Reynolds stress model from a differential Reynolds stress transport equation valid
in an arbitrarily rotating time-dependent coordinate frame (relative to an inertial
system). Although the form of this implicit algebraic equation differed from previous
implicit forms, its correctness was argued based on the objective tensor form of the
implicit algebraic equation. It is shown here that such conclusions based on simple
coordinate frame transformations are incomplete, and that additional considerations
taking into account flow rotation and curvature, for example, are necessary. By
properly accounting for both the arbitrary motions of the observer coordinate frame
as well as the motion of the flow itself, it is shown that previous formulations and
application of the weak-equilibrium condition are correct in contrast to the results of
Weis & Hutter.

1. Introduction
Over the last decade, there has been widespread use of explicit algebraic stress

models in computing turbulent flow fields. The origin of the implicit models from
which the explicit ones have been derived has been attributed to Rodi (1972, 1976).
The basis for the explicit forms commonly in use today is due to Pope (1975). Further
details about these explicit algebraic models can be found elsewhere (Girimaji 1996;
Gatski & Jongen 2000; Wallin & Johansson 2000; Gatski & Rumsey 2002). In inertial
frames of reference, there is no ambiguity in the assumptions required to obtain the
implicit algebraic Reynolds stress equations from the corresponding differential form.
These assumptions are that the material derivative of the Reynolds stress anisotropy
tensor bij is zero and that the anisotropy of the turbulent transport and viscous
diffusion term tensor Dij is proportional to the Reynolds stress itself. These two
assumptions (conditions) can be written as,

Dbij

Dt
= 0, (1.1)

where D/Dt = ∂/∂t + Uk∂/∂xk , and

Dij =
τij

2K
Dkk, (1.2)
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respectively. Here, the Reynolds stress anisotropy is defined as

bij =
τij

2K
− δij

3
, (1.3)

where τij = uiuj are the Reynolds stresses and K = τkk/2, and the turbulent transport
and viscous diffusion term tensor is given by

Dij = − ∂

∂xk

(uiujuk + puiδjk + pujδik) + ν∇2τij . (1.4)

(The convention that capital letters are associated with mean values and lower-case
letters are associated with the turbulent fluctuations is adopted here.) The focus of
this study is on the suitability of the equilibrium condition associated with (1.1).

In flows described relative to an inertial frame of reference and in flows where
the local rotation rate of the fluid is fixed along a streamline (that is, no curvature
and/or flow rotation effects present), the conditions given in (1.1) and (1.2) can be
applied unambiguously. However, in formulating algebraic Reynolds stress models in
flows relative to non-inertial frames or in flows where local rotation rate effects of the
fluid are not fixed (that is, curvature and/or flow rotation effects present), alternative
conditions must be considered. Specifically, while (1.1) applies in the former case,
alternative forms must be considered for the latter more complex flow case. This was
realized over twenty years ago by Rodi & Scheuerer (1983) and is the subject of the
analysis reported here.

2. Transformation properties of the Reynolds stress anisotropy transport
equations

It is necessary at the outset of discussions on transformation properties to establish
the fundamental relations and then to carry those through in transforming any equa-
tions. Otherwise, notational ambiguities arise and it is very difficult to cross-reference
with other related work.

Let the base Eulerian system (the frame in which the observer is fixed) be given
by the rectangular coordinates xi . Now consider the rectangular coordinates x∗

i of a
point in a frame of reference in arbitrary time-dependent motion relative to the fixed
(inertial) Eulerian frame identified with xi . The transformation rule between these
two frames is simply given by

x∗
i (t

∗) = Qij [xj + x0j ], (2.1)

where Q=Q(t) is a time-dependent proper orthogonal tensor (QQT = I, detQ =+1,
I is the identity tensor), x0j = x0j (t) is a time-dependent displacement vector, and
t∗ = t + t0 (t0 is an arbitrary constant time shift). Without loss of generality in the
present analysis, translational accelerations are not considered (ẋ0j = const).

It is well established that the Reynolds stress anisotropy tensor bij is a function of
both the strain rate (S) and rotation rate (W) tensors such that

bij = bij (S, W, τ ), (2.2)

where

Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, Wij =

1

2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
, (2.3)

and τ is some turbulent time scale. (Note that throughout there will be an interchange
between tensor and matrix notation to simplify the notational burden where possible.)
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In addition, it is known that the anisotropy tensor bij is objective (Speziale 1979), that
is, it is the same no matter which coordinate frame an observer measures it in. Such
objective tensor quantities transform from one frame to the other in the manner of
Eringen (1980)

b∗
ij = QikQjlbkl. (2.4)

Note that from (2.2) it follows that bij should be a function of objective quantities
as well. Relative to Euclidean transformations, the strain rate tensor Sij is objective
while the rotation rate tensor Wij is not. Only under a Galilean transformation (a
translatory transformation) will Wij itself be objective. With the definition of Wij in
(2.3) in terms of the proper definition of the velocity (Ui ≡ ∂Xi/∂t), the Sij and Wij

tensors transform as

Sij = QkiS
∗
klQlj , (2.5a)

Wij = QkiW
∗
klQlj + Q̇kiQkj , (2.5b)

where an overdot denotes the time derivative. Equation (2.5b) can be rewritten in the
form

Wij = Qki(W
∗
kl + Ω∗

kl)Qlj . (2.6)

Ωij = Q̇kiQkj = εjikωk is the rotation rate tensor associated with the angular rotation
rate vector ωk of the x∗

i coordinates and Ω∗
ij = QikΩklQjl is the rotation rate expressed

in the x∗
i system.

Equation (2.6) also shows that the rotation rate tensor W ∗
ij can be made objective

by adding a measure of the non-inertial frame rotation rate Ω∗
ij . This modification

of W ∗
ij is not surprising since objective variables are quantities independent of the

motion of the observer (Eringen 1980). Astarita (1979) provides a simple proof of the
objective character of W ∗

ij + Ω∗
ij . Although the functional dependency given in (2.2)

holds for inertial frames as well as other frames under a Galilean transformation, it
will be shown shortly that under the more general Euclidean transformation group,
a corresponding relation, in terms of objective variables, can be derived.

Since the goal of this analysis is to ascertain the proper set of conditions on which
to base the form of an algebraic Reynolds stress model, it is necessary to first examine
the Reynolds stress anisotropy equation which can be written as

Dbij

Dt
= −

(
P
ε

− 1

)
bij

τ
− 2

3
Sij −

(
bikSkj + Sikbkj − 2

3
[b : S]δij

)

+ (bikWkj − Wikbkj ) +
Πij

2K
, (2.7)

where Πij is the pressure–strain rate correlation, ε is the isotropic scalar dissipation
rate, and P = −2KbmnSnm is the production of turbulent kinetic energy. Here, the
effect of turbulent transport and diffusion of the anisotropy has been neglected.

Numerous models have been proposed for the pressure–strain rate correlation with
the functional dependency generally given by Πij = Πij (bkl, Skl, Wkl, τ ). For the present
purposes, only models linear in bkl , Skl , and Wkl need be considered and these take
the form,

Πij

K
= α1

bij

τ
+ α2Sij + α3

(
bikSkj + Sikbkj − 2

3
[b : S]δij

)
+ α4(bikWkj − Wikbkj ). (2.8)

The question now is what form does the Reynolds stress anisotropy equation (2.7),
and the modelled pressure–strain rate correlation take in the non-inertial frame. Let



150 T. B. Gatski and S. Wallin

us write the Reynolds stress anisotropy equation in the following form

Dbij

Dt
= fij (bkl, Skl, Wkl), (2.9)

for a clear illustration of the different transformation properties. A formal transform-
ation to the x∗

i system results in

Db∗
ij

Dt
− (b∗

ikΩ
∗
kj − Ω∗

ikb
∗
kj ) = f ∗

ij (b
∗
kl, S

∗
kl, W

∗
kl + Ω∗

kl). (2.10)

Note that the complete left-hand side is the advection of the anisotropy expressed
in the x∗

i system and it is not correct to label only the first differential part,
Db∗

ij /Dt ≡ ∂b∗
ij /∂t +U ∗

k ∂b∗
ij /∂x∗

k , as the advection or time derivative in the x∗
i system.

Db∗
ij /Dt only represents the advection or time derivative of the individual components

of the transformed anisotropy. Equations (2.10), (2.7) and (2.8) can be combined to

Db∗
ij

Dt
− (b∗

ikΩ
∗
kj − Ω∗

ikb
∗
kj ) = −

(
P
ε

− 1 − 1
2
α1

)
b∗

ij

τ
−

(
2
3

− 1
2
α2

)
S∗

ij

−
(
1 − 1

2
α3

)(
b∗

ikS
∗
kj + S∗

ikb
∗
kj − 2

3
[b∗ : S∗]δij

)
+

(
1 + 1

2
α4

)
(b∗

ikW
∗
kj − W

∗
ikb

∗
kj ), (2.11)

where the objective absolute vorticity tensor is

W
∗
ij = W ∗

ij + Ω∗
ij . (2.12)

Equation (2.11) is consistent with the assertion made following (2.4) that the anisot-
ropy tensor should only depend on objective quantities, and is also consistent with
forms that have been arrived at previously (e.g. Speziale 1979; Wallin & Johansson
2000; Wies & Hutter 2003). These results show that the Reynolds stress anisotropy
equation given by (2.7) is not form-invariant with a change of coordinate frame
under the Euclidean group. Only under the Galilean group (Ω∗ = 0) would (2.7) be
form-invariant (Speziale 1979). However, (2.7) when transformed under the Euclidean
group can be rewritten in terms of objective variables such that the functional relation
given by (2.2) can be extended to the more general form

b∗
ij = b∗

ij (S
∗, W

∗
, τ ). (2.13)

Although these tensor manipulations provide a formalism with which to discuss the
various forms of the transport equations in different coordinate frames as well as
the proper functional dependencies, they do not provide any information on the
behaviour of the solutions of the equations themselves. As pointed out in § 1, the
implicit form of an algebraic Reynolds stress model depends on a weak-equilibrium
condition associated with the Reynolds stress anisotropy. In flows with minor effects
of rotation or mean flow curvature the relevant condition was Dbij /Dt =0. This is
the classical weak-equilibrium condition as proposed by Pope. This obviously results
in neglecting the complete left-hand side of (2.10) and is also the most obvious way
of obtaining an objective relation for the anisotropy tensor.

In the next section, this condition is generalized to flow fields where more complex
non-inertial effects are present.
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3. Equilibrium conditions in rotating and curved flows
The tensorial transformation properties of the Reynolds stress anisotropy equation

just established were kinematic in nature and did not reflect in any way on the
dynamic state of the turbulent flow field. In this section, a general set of equilibrium
conditions on the turbulence dynamics will be extracted using the transformation
properties established in the previous section.

Consider the time-dependent motion of a turbulent flow relative to some Eulerian
frame xi . Two such examples are a turbulent flow rotating uniformly relative to
an inertial xi frame, and a turbulent flow with arbitrary mean streamline curvature
relative to an inertial xi frame. The question that now arises in formulating an implicit
algebraic Reynolds stress equation is what form does the weak-equilibrium condition
take in such flows. It is not difficult to envisage that the standard form (Dbij /Dt = 0)
used in the simple rectilinear flows relative to an inertial frame will not be satisfied.

Let the coordinate system that follows the flow be given by the rectangular
coordinates x

†
i , and let the arbitrary time-dependent rotation of the x

†
i coordinates be

represented by ω(r).
It is important to recognize that there is a distinction between a coordinate frame in

which an observer is fixed (x∗
i system), and a coordinate frame embedded within the

fluid (x†
i system). Each can be undergoing arbitrary motion relative to one another

as well as to some (common) Eulerian, inertial frame.
Let the transformation to the x

†
i system be given by

x
†
i = Tij [xj + x0j ], (3.1)

where T = T(t) is a time-dependent proper orthogonal tensor (TTT = I, det T= +1), and
x0j is a displacement vector introduced in (2.1). The rotation rate tensor Ω

(r)
ij = ṪkiTkj =

εjikω
(r)
k is associated with the angular rotation rate vector ω

(r)
k of the x

†
i coordinates,

or the rotation rate vector of the flow.
Consider now the functional relationship for the Reynolds stress anisotropy tensor

given in (2.9) which is deduced from its modelled transport equation. Since the
fij (bkl, Skl, Wkl) is an isotropic function of it arguments, the Reynolds stress anisotropy

equation in (2.9) can be written in the x
†
i system as

Db
†
ij

Dt
−

(
b

†
ikΩ

(r)
kj

† − Ω
(r)
ik

†
b

†
kj

)
= f

†
ij

(
b

†
kl, S

†
kl, W

†
kl + Ω

(r)
kl

†)
. (3.2)

The first term Db
†
ij /Dt ≡ ∂b

†
ij /∂t +U

†
k ∂b

†
ij /∂x

†
k represents the advection of the

individual components of the anisotropy tensor in the x
†
i coordinate system (that

is the system embedded in the flow) and, if the flow is homogeneous following the
mean motion, then Db

†
ij /Dt = 0 identically.

As noted previously, the x
†
i system can be independent of the coordinate system

of the observer (the x∗
i system). Thus, it is straightforward to transform (3.2) back to

the inertial system xi

Tki

Db
†
kl

Dt
Tlj −

(
bikΩ

(r)
kj − Ω

(r)
ik bkj

)
= fij (bkl, Skl, Wkl). (3.3)

Irrespective of the coordinate system that one is in, the correct form of the weak-
equilibrium assumption must be that Db

†
ij /Dt = 0. This means that the first term

on the left-hand side of (3.3) must vanish, and that the resulting implicit algebraic
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equation for bij in the inertial frame will be given by

fij

(
bkl, Skl, Wkl

)
+

(
bikΩ

(r)
kj − Ω

(r)
ik bkj

)
= 0. (3.4)

This result can be generalized further. Once again, consider the observer in the x∗
i

frame. It is straightforward to transform (3.3) to the x∗
i system by applying the

transformation operator Q to this equation. This results in an equation for the
anistropy tensor b∗

ij given by

QTT D b†

Dt
TQT −

(
b∗Ω (r)∗ − Ω (r)∗

b∗) = f∗(b∗, S∗, W∗ + Ω∗), (3.5a)

or

QTT DTQT b∗QTT

Dt
TQT −

(
b∗Ω (r)∗ − Ω (r)∗

b∗) = f∗(b∗, S∗, W∗ + Ω∗). (3.5b)

(To simplify the form of the equation, matrix notation is used here.) Observe that the
rotation rate tensor Ω (r)∗

on the left-hand side, in general, differs from the rotation
rate tensor Ω∗ added to the vorticity tensor on the right-hand side of (3.5a) or (3.5b).
The former represents a measure of the rotation rate of the flow, while the latter
represents the rotation rate of the observer.

Once again, applying the weak-equilibrium assumption Db
†
ij /Dt =0 yields an

implicit algebraic equation for b∗ in the x∗
i system

f∗(b∗, S∗, W∗ + Ω∗) +
(
b∗Ω (r)∗ − Ω (r)∗

b∗) = 0. (3.6)

Note that if the x∗
i system of the observer coincides with the x

†
i system embedded in

the fluid flow (Ω (r)
ij =Ω∗

ij ), then (3.6) reduces to

f∗(b∗, S∗, W∗ + Ω∗) + (b∗Ω∗ − Ω∗b∗) = 0. (3.7)

This is the situation that commonly arises in the study of turbulent rotating flows
such as rotating homogeneous shear flow and rotating channel flow. In these flows,
the turbulence is analysed relative to a coordinate frame used by an observer that
is moving at the same rotation rate as the mean flow (e.g. Speziale & Mac Giolla
Mhuiris 1989; Speziale, Gatski & Mac Giolla Mhuiris 1990; Jongen, Machiels &
Gatski 1998). A long time equilibrium state exists that is characterized by fixed points
given by b∗

ij = const. This situation corresponds to the case discussed previously where

the coordinate system used by the observer coincides with the x
†
i system embedded

in the fluid. In this case, the equation governing the turbulence is given by (3.7). This
equation shows a direct dependence on the system rotation rate that would then yield
different equilibrium values (t → ∞) for b∗

ij for different rotation rates. Obviously,
relation equation (3.7) is not Euclidean invariant, since it is only valid for the specific
choice that the (rotational) motion of the observer coincides with the (rotational)
motion of the flow.

The correctness of the extended weak-equilibrium condition Db
†
ij /Dt =0 derived

here in (3.3) and resulting in (3.7), is clearly illustrated by computing a fully developed
rotating channel flow. Using the full differential Reynolds stress model (DRSM)
proposed by Wallin & Johansson (2002), it is shown in figure 1 that the EARSM
derived using the extended weak equilibrium condition predicts a velocity profile
that closely approximates the corresponding DRSM while the prediction from the
original weak equilibrium condition, and advocated by Weis & Hutter (2003), is
clearly not applicable to such flows. Similar results were also obtained by Jongen
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Figure 1. Mean velocity distribution across rotating channel flow for Ro = 0.77 and Reτ =

180. Computations using EARSM applying Db
†
ij /Dt = 0 ( ) in (3.3) compared to the cor-

responding DRSM ( ) and the EARSM applying Dbij /Dt = 0 ( · ). �, DNS of Alvelius
(1999).

et al. (1998) using the simulation data of Lamballais, Lesieur & Métais (1996) and
a different EARSM. It should be mentioned that a standard eddy-viscosity model,
without explicit rotation corrections, will predict a symmetric velocity profile.

A more general situation arises in the case of curved turbulent flows. In these flows,
the turbulence is commonly analysed relative to an observer fixed in an inertial frame
xi . A measure of flow curvature is deduced from the coordinate frame x

†
i embedded

in the flow. There have been several Galilean invariant proposals put forward for
identifying x

†
i (e.g. Girimaji 1997; Sjögren 1997; Gatski & Jongen 2000; Wallin &

Johansson 2002) and these have been analysed by Wallin & Johansson (2002) and
Hellsten (2002). For example, the proposal by Gatski & Jongen (2000), later extended
to three-dimensional flows by Wallin & Johansson (2002), uses a x

†
i coordinate frame

in principle aligned with the principal axes of the strain rate tensor Sij . In these flows,

a fixed point is reached that is characterized by the condition b† =const., and (3.4)
applies. An example of a curved flow solution where the effect of imposing the correct
weak-equilibrium solution is analysed is given by Rumsey, Gatski & Morrison (2000)
for the case of turbulent flow in a U-bend.

4. Concluding remarks
The results in the previous section directly contradict those of Weis & Hutter (2003)

who base their conclusions on a rationale that fails to account for the rotation or
curvature of the flow itself. As such, their analysis stops with the long-established
form of the Reynolds stress anisotropy equation given in (2.11). At this stage, they
argue that it is incorrect for the observer in the x∗

i frame to impose a condition on the
Reynolds stress anisotropy tensor (i.e. Db∗

ij /Dt = 0) that differs from an observer in
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the xi inertial frame (i.e. Dbij /Dt = 0). This is the rational conclusion if, and only if,

the anisotropy is forced to be independent of Ω (r) as proposed by Rodi (1972, 1976).
Thus, the turbulence is modelled to be dependent on S and W, the strain rate and
(absolute) vorticity tensors, only. The argument then follows that the proper weak-
equilibrium condition to impose is Db∗

ij /Dt − (b∗
ikΩ

∗
kj − Ω∗

ikb
∗
kj ) = 0. Weis & Hutter

(2003) further argue that with this condition, the resulting implicit algebraic equation
for b∗

ij is invariant since it is composed solely of objective tensors.
However, once again, the turbulence is indeed also dependent on the rotation or

curvature of the flow itself represented by Ω (r). Weis & Hutter (2003) claim that
this is inconsistent with Euclidean invariance. In the previous section, it has been
clearly shown that Ω (r) indeed can be accounted for, where the correct invariance
properties are preserved. Thus, the modelled Reynolds stress tensor is independent of
the rotation rate of the observer.

In the notation used here, the conclusions of Weis & Hutter (2003) lead to an
incomplete form for the implicit algebraic Reynolds stress anisotropy equation

f∗(b∗, S∗, W∗ + Ω∗) = 0. (4.1)

When compared with the forms for the implicit algebraic equations derived here, (3.6)
and (3.7), when the motion of the flow itself is taken into account, it is evident that the
results obtained from the two formulations would differ significantly. Additionally,
the notion of invariant modelling employed by Weis & Hutter (2003) is not consistent
with the behaviour of the differential Reynolds stress transport equations. It is well
known that these equations are not form-invariant under arbitrarily rotating time-
dependent (Euclidean) transformations. Thus, there is no reason why this condition of
frame invariance should be imposed on a set of implicit algebraic equations that are
intended to replicate, as closely as possible, the predictive capabilities of the differential
forms. The condition that should be imposed is that the implicit algebraic equations
retain as closely as possible the frame-invariance properties of the differential form.

It has been shown here how the weak-equilibrium condition required in the
development of implicit algebraic stress models is consistently imposed on equations
describing turbulent flows with rotation or curvature effects. Although these forms
have been derived and used previously, Weis & Hutter (2003) have recently developed
an alternative weak-equilibrium condition that directly contradicts the established
forms and is based on an incomplete analysis of the transformation properties of the
governing equations. The analysis presented here is intended to clarify the assumptions
and detail the steps used in arriving at this well-established weak-equilibrium condition
and its application in rotating and curved flows.

The work by S.W. has partly been carried out within the HiAer Project (High Level
Modelling of High Lift Aerodynamics), a collaboration between DLR, ONERA,
KTH, HUT, TUB, Alenia, Airbus, QinetiQ and FOI. The project is managed by FOI
and is partly funded by the European Union (Project Ref: G4RD-CT-2001-00448).
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